Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize
نویسندگان
چکیده
ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.
منابع مشابه
Accumulation of Group 3 Late Embryogenesis Abundant Proteins in Zea mays Embryos : Roles of Abscisic Acid and the Viviparous-1 Gene Product.
Several different types of proteins that are modulated by abscisic acid (ABA) accumulate in developing embryos of maize (Zea mays L.). Some of these proteins are specific to the developing seed, such as the storage globulin, GLB1, whereas others are involved in general responses to water deficit. Here we describe a maize protein family of this second type, a Group 3 late embryogenesis abundant ...
متن کاملDifferential Accumulation of Manganese-Superoxide Dismutase Transcripts in Maize in Response to Abscisic Acid and High Osmoticum.
The plant growth regulator abscisic acid (ABA) has multiple physiological effects during embryogenesis and seed formation. Although a number of genes induced by ABA have been characterized, the functions of the encoded proteins remain, for the most part, obscure. In this paper we demonstrate that members of the manganese-superoxide dismutase (MnSod) gene family encoding antioxidant isozymes of ...
متن کاملQuantitative Proteomic Analyses Identify ABA-Related Proteins and Signal Pathways in Maize Leaves under Drought Conditions
Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic acid (ABA) have been widely studied in crops in response to drought stress. However, more attention is needed to identify key ABA-related proteins and also gain deeper molecular insights about drought stress in maize. Based on this need, the physiology and proteomics of the ABA-deficient maize mutant vp5...
متن کاملQuantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress
Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to ident...
متن کاملAbscisic Acid Refines the Synthesis of Chloroplast Proteins in Maize (Zea mays) in Response to Drought and Light
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014